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Quantum Computing

By Scott Pakin



A bit can be

true or false

on or off
1 or 0

yes or no

up or down

high or low

in or out

left or right

It is the most primitive 
unit of information

set or reset



N bits can represent 
any one of 2N values

000
001
010
011

100
101
110
111



There are four possible 
1-bit operators

• a
• ⊥
• ⊤
• ¬a



There are sixteen possible 
2-bit operators

• ⊥
• a↓b
• a↚b
• ¬a
• a↛b
• ¬b

• a⊻b
• a↑b
• a∧b
• a↔b
• b
• a→b

• a
• a←b
• a∨b
• ⊤



You take the blue pill, the story ends; you wake up in your 
bed and believe whatever you want to believe. You take 
the red pill, you stay in Wonderland, and I show you how 
deep the rabbit hole goes.



A qubit is a point in a 
2-D Hilbert space
(i.e., a pair of complex numbers)
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A qubit’s state as a 
linear combination of 
basis vectors:

1
0

0
1

|0⟩ |1⟩

𝜓𝜓 = 𝛼𝛼 0 + 𝛽𝛽|1⟩ 𝛼𝛼, 𝛽𝛽 ∈ ℂ
𝛼𝛼 2 + 𝛽𝛽 2 = 1

How much 
“0-ness”

How much 
“1-ness”



A qubit can 
simultaneously have 
properties of both 0 
and 1

⟩|0

⟩|1
⟩|𝜓𝜓 We call |𝜓𝜓⟩ a 

superposition of 
0 and 1

𝜓𝜓 = 𝛼𝛼 0 + 𝛽𝛽|1⟩



There are an infinite 
number of 0s and 1s

Easier to discern 
from the Bloch 
sphere, a commonly 
used projective 
vector space

All 𝑒𝑒𝑖𝑖𝑖𝑖|0⟩ represent 
different phases of 0



N qubits can represent 
all 2N values 
simultaneously

000
001
010
011

100
101
110
111

N qubits are represented with a 
vector of length 2N



Oracle: I’d ask you to sit down, but, you're not 
going to anyway. And don’t worry about the vase.
Neo: What vase? 

[Crash]
Oracle: That vase.

…
Neo: How did you know?
Oracle: Ohh, what’s really going to bake your 
noodle later on is, would you still have broken it if 
I hadn’t said anything?

Measuring 
a qubit 
collapses 
it to a 
classical 
0 or 1
𝛼𝛼 0 + 𝛽𝛽|1⟩ is 
measured as 0 
with probability 
𝛼𝛼 2 and 1 with 

probability 𝛽𝛽 2



A 2-qubit state can be 
constructed from the 
tensor product of two 
1-qubit states
(and similarly for N-qubit states)

10 = 1 ⊗ 0 = 0
1 ⊗ 1

0 =

0 ⋅ 1
0 ⋅ 0
1 ⋅ 1
1 ⋅ 0

=

0
0
1
0

00-ness

01-ness

10-ness

11-ness



Qubits do not necessarily 
have their own identity

1
2

1
2

1
2

1
2

T
is read as 00, 01, 10, 

or 11 with 25% probability apiece

0 1
2

1
2

0
T
is read as 01 or 10

with 50% probability apiece

Measuring/modifying one 
qubit affects the other

We call this 
entanglement



There are infinitely 
many 1-qubit operators
(2×2 unitary matrices)

• Example #1: 𝑁𝑁𝑁𝑁𝑁𝑁 = 0 1
1 0

• Example #2: 𝑁𝑁𝑁𝑁𝑁𝑁 = 1
2

1 + 𝑖𝑖 1 − 𝑖𝑖
1 − 𝑖𝑖 1 + 𝑖𝑖

reversible



Visualizing some 1-qubit 
operators (“gates”)

Pauli x gate (X) Pauli y gate (Y) Pauli z gate (Z)

Hadamard gate (H)

• A Hadamard gate puts a qubit 
in a perfect superposition 
of 0 and 1

• 𝑋𝑋𝑋𝑋 = 𝑌𝑌𝑌𝑌 = 𝑍𝑍𝑍𝑍 = 𝐻𝐻𝐻𝐻 = 𝐼𝐼
• Implication: deterministic → 
random → deterministic

0 1
1 0

0 −𝑖𝑖
𝑖𝑖 0

1 0
0 −1

1
2

1 1
1 −1



There are infinitely 
many 2-qubit operators
(4×4 unitary matrices)

• Example #1:

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

• Swaps values of qubits a and b

• Example #3:

• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

• Negate b if a is |1⟩
• Useful for entangling states
• What if b is in a superposition?
• What if a is in a superposition?

• Example #2:

• 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

1 0 0 0
0 0 𝑖𝑖 0
0 𝑖𝑖 0 0
0 0 0 1

• Universal—with 1-qubit gates, 
can construct any other gate



I know what you’re thinking, ’cause right now I’m thinking 
the same thing. Actually, I’ve been thinking it ever since I 
got here: Why, oh why, didn’t I take the blue pill?



Quantum circuits



Mystery function goes here

What’s the big deal?
• First answered by Deutsch and Josza in 1992

• Determine if a given black-box function is 
constant or balanced
• For one bit, constant functions are f(x)=0 and f(x)=1; 

balanced are f(x)=x and f(x)=¬x
• Classical: Evaluate f(x) twice
• Quantum: Evaluate f(x) once—returns 0 for balanced, 1 

for constant

• Increasing performance improvement with 
scale
• Classical: Evaluate f(x) N/2 +1 times for N bits
• Quantum: Evaluate f(x) once for N bits

?



Quantum algorithms

• Begin and end classically 
(i.e., only |0⟩ and |1⟩ states)

• Quantum in between
• Can compute on all 2N combinations 
in parallel

• The catch: Only one N-bit answer 
comes out



Challenges

• Reduce/cancel out 
probability 
amplitudes of 
non-solutions

• Manage rotations 
in an 
N-dimensional 
Hilbert space

• To date, only a 
small number of 
algorithms exist

Speedup over 
classical #

Exponential 2
Superpolynomial 27
Polynomial 25
Constant 2
Varies 4
Total 60

Stephen Jordan
Quantum Algorithm Zoo
http://math.nist.gov/quantum/zoo



Unordered search

• Which screen’s image matches a 
given pattern?

• Classical: 𝑂𝑂(𝑁𝑁) queries
• Quantum: 𝑂𝑂( 𝑁𝑁) queries (next two 
slides)



Grover’s search algorithm
• Given
• A power-of-2 number of elements
• A guarantee that exactly one 
element matches the pattern

• An operator 𝑈𝑈𝜔𝜔 that, given an 
element |𝑥𝑥⟩, flips the 
probability amplitude iff the 
element matches (i.e., 𝑈𝑈𝜔𝜔 𝑥𝑥 =
− |𝑥𝑥⟩ for 𝑥𝑥 = 𝜔𝜔 and 𝑈𝑈𝜔𝜔 𝑥𝑥 = |𝑥𝑥⟩ for 
𝑥𝑥 ≠ 𝜔𝜔)

• Return the matching element



Grover’s search algorithm

• Approach: For 𝑁𝑁 iterations, 
alternately apply 𝑈𝑈𝜔𝜔 followed by 
“Grover diffusion operator” 𝑈𝑈𝑠𝑠

• 𝑈𝑈𝑠𝑠 ≡ 2|𝑠𝑠⟩⟨𝑠𝑠| − 𝐼𝐼, which flips 
amplitudes around the mean
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Integer factorization
• Factor an integer into a product 
of two primes

• Best known classical algorithm 
has running time 𝑂𝑂(2

3 𝑁𝑁)
• Best known quantum algorithm has 
running time 𝑂𝑂(log3 𝑁𝑁) (next slide)

• Exponential speedup
• Expected that factoring a 50–100 
bit number would be intractable 
classically but tractable with 
quantum: “quantum advantage”



Shor’s algorithm
• It’s not too hard to factor N
into primes p and q if we know 
the period of the sequence {a1 mod 
N, a2 mod N, a3 mod N, …} for some 
a<N with p∤a and q∤a

• Apply an inverse quantum Fourier
• transform to 
find the 
period

• All else is
• classical—and randomized



Conclusions
• Very different form of computing
• Qubits carry more information 
than classical bits (e.g., phase)

• Quantum gates perform state 
transformations in high-D spaces

• Exploit superpositioning and 
entanglement for full parallelism

• Manipulate probability amplitudes 
to isolate correct answers

• Potential for exponential
performance improvement



I’m trying to free your mind, Neo. But I can only show you 
the door. You’re the one that has to walk through it.
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